# PREPARATION OF RIBOSYL DERIVATIVES <br> OF 1,2,4-TRIAZOL-3( $2 H$ )-ONE <br> AND 5-METHYL-1,2,4-TRIAZOL-3(2H)-ONE* 

Hubert Hřebabecký and Jiǐí Beránek<br>Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 16610 Prague 6

Reaction of the silylated triazolone $I$ with 2,3,5-tri-O-benzoyl-D-ribofuranosyl bromide afforded a mixture of the 4 -ribosyltriazolone $I X a$ and 2,3-diribosyltriazolone $X a$. Under the same conditions the silylated 5-methyltriazolone $I I$ gives the 4-ribosyl derivative $X I a$ and 2-ribosyl derivative XIIa. The 4-phenyl and 4-ribosyltriazoles VII,VIII, IX $a$ and $X I a$ were prepared by an alternative synthesis: cyclisation of 1-ethoxymethylene-, 1-(1-ethoxyethylidene)-4-phenyl- and 4-ribosylsemicarbazides $X I I I, X I V, X V a, b$ and $X V I a, b$ in boiling hexamethyldisilazane in the presence of ammonium sulfate. The semicarbazides $X I I I, X I V, X V a, b$ and $X V I a, b$ were obtained by reaction of 4-phenyl- or 4-ribosylsemicarbazide with triethyl orthoformate or diethyl orthoacetate. Compounds XIII and XIV were obtained as the ( $E$ )-isomers whereas compounds $X V$ and $X V I$ as mixtures of $(Z)$ - and $(E)$-isomers $X V a, b$ and $X V I a, b$, respectively. The benzylation of the triazolones $I$ and $I I$ was also studied.

In our recent study ${ }^{1}$ we investigated a series of nucleoside analogs as potential cytidine aminohydrolase inhibitors. Of the studied compounds only 4-ribosyl-1,2,4--triazol-3(2H)-one (IXb) has shown some inhibitory activity. The aim of our present communication was the synthesis of the compound $I X b$ and other triazolone derivatives which might possess similar activity.

As a model reaction we first investigated benzylation of sodium salt of the triazolone $I$ and the 5-methyltriazolone $I I$. Reaction of the former salt (ref. ${ }^{2}$ ) with $1 \cdot 5$ equivalent of benzyl chloride in dimethylformamide at room temperature gave after 4.5 h a mixture from which we isolated the 4-benzyl derivative III ( $33 \%$ ), the dibenzyl derivative $I V(16 \%)$ and the unreacted triazolone $I(30 \%)$. Similarly, sodium salt of 5-methyltriazolone $I I$ (ref. ${ }^{3}$ ) reacted with benzyl chloride under the same conditions to give the 4-benzyl derivative $V(25 \%)$, the dibenzyl derivative $V I(21 \%)$ and the starting $I I(30 \%)$. Daunis and Roumestant reported ${ }^{4}$ that reaction of $I I$ with methyl iodide in boiling methanol gave 2,5-dimethyl-1,2,4-triazol-3(2H)-one and 4,5-di-methyl-1,2,4-triazol-3(2H)-one in the ratio $35: 65$.

* Part XLIII in the series Analogues of Nucleosides; Part XLII: This Journal 50, 383 (1985).

Ribosidation of the triazolones $I$ and $I I$ was performed via the silylated triazolones which were reacted with $2,3,5$-tri-O-benzoyl-D-ribofuranosyl bromide in acetonitrile in the presence of mercuric bromide. The triazolone $I$ afforded the protected 4-ribosyl derivative $I X a$ in $39 \%$ yield and the diribosyl derivative $X a$ in $42.5 \%$ yield. Ribosidation of the 5 -methyltriazolone $I I$ had a somewhat different course. Whereas the 4-ribosyl derivative XIa was obtained in $60 \%$ yield, no diribosyl derivative was observed. Instead, the 2 -ribosyl derivative $X I I a$ was isolated in $15 \%$ yield. The free nucleosides $I X b, X b, X I b$ and $X I I b$ were obtaincd by methanolysis of the protected derivatives. The diriboside $X a$ was methanolyzed with methanolic solution of barium methoxide, other protected nucleosides with methanolic sodium methoxide.

$I, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathbf{H}$
II, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{CH}_{3}$
III, $\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$
IV, $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, \mathrm{R}^{3}=\mathrm{H}$
$V, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, \mathrm{R}^{3}=\mathrm{CH}_{3}$
$V I, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, \mathrm{R}^{3}=\mathrm{CH}_{3}$
VII, $\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{C}_{6} \mathrm{H}_{5}$
VIII, $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{3}=\mathrm{CH}_{3}$

$I X a, \mathrm{R}^{1}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}, \mathrm{R}^{2}=\mathrm{H}$
$I X b, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
$X I a, \mathrm{R}^{1}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}, \mathrm{R}^{2}=\mathrm{CH}_{3}$
$X I b, \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CH}_{3}$

The structure of the 4-benzyl compounds $I I I, V$ and the 4-ribosyl derivatives $I X a$ and XII was confirmed by their alternative synthesis. Compounds $I I I$ and $V$ were obtained by cyclisation of 1 -acylsemicarbazides ${ }^{3,4}$ in boiling $10 \%$ aqueous potassium hydroxide solution. 4-Benzyl-1-formylsemicarbazide and 4-benzyl-1-acetylsemicarbazide were prepared by reaction of 4-benzylsemicarbazide with ethyl formate and acetic anhydride, respectively. Their cyclization afforded 4-benzyltriazolones with melting points, IR and ${ }^{1} \mathrm{H}$ NMR spectra identical with those of compounds $I I I$ and $V$ prepared by benzylation of the triazolones $I$ and $I I$. The starting 4-benzylsemicarbazide was synthetized according to the described method ${ }^{5}$ by a modified procedure.

The 4-ribosyltriazolones $I X a$ and $X I a$ were obtained by cyclisation of 1-ethoxy-methylene- and 1-(1-ethoxyethylidene)-4-ribosylsemicarbazides XIV and XVIa,b, respectively. The cyclisation reaction was studied with 4-phenylsemicarbazides XIII and $X V a, b$ the best results being obtained in boiling hexamethyldisilazane in the
presence of a a small amount of ammonium sulfate. This method was used also in cyclisation of the ribosylsemicarbazides XIV and XVIa,b. The semicarbazides XIII, XIV, XVa,b and XVIa,b were prepared by reaction of triethyl orthoformate or triethyl orthoacetate with 4-phenyl- or 4-ribosylsemicarbazide ${ }^{6}$ in dichloromethane. The attempted preparation of the analogous 4-benzyl derivative under the same conditions was unsuccessful, since 4-benzylsemicarbazide afforded $\mathrm{N}, \mathrm{N}^{\prime}$-bis( $\mathrm{N}^{\prime}$-benzylureido)formamidine. 1-(1-Ethoxyethylidene)semicarbaz'des are formed as a mixture of two geometric isomers which were separated by column chromatography on silica gel. In the case of 1-ethoxymethylenesemicarbazides only the ( $E$ )-isomers were obtained. Infrared spectra of the (Z)-isomers XVa and XVIa in tetra-


$X a, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$
$X I I a, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}$
$X b, \mathrm{R}=\mathrm{H}$
$X I I b, \mathrm{R}=\mathrm{H}$


$X V a, \mathrm{R}^{1}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{2}=\mathrm{CH}_{3}$
XVIa, $\mathbf{R}^{1}=2,3,5$-tri-O-benzoyl-

- $\beta$-d-ribofuranosyl,
$\mathrm{R}^{2}=\mathrm{CH}_{3}$

XIII, $\mathrm{R}^{1}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{2}=\mathrm{H}$
$X I V, \mathrm{R}^{1}=2,3,5$-tri-O-benzoyl-

- $\beta$-D-ribofuranosyl
$X V b, \mathrm{R}^{1}=\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{2}=\mathrm{CH}_{3}$
XVIb, $\mathrm{R}^{1}=2,3,5$-tri-O-benzoyl-- $\beta$-d-ribofuranosyl,
$\mathrm{R}^{2}=\mathrm{CH}_{3}$
chloromethane exhibit bands of the free ( 3394.5 and $3400 \mathrm{~cm}^{-1}$, respectively) and bonded ( 3205 and $3208 \mathrm{~cm}^{-1}$, respectively) NH groups. The ratio of band intensities is the same both in saturated solution and in concentration $0.003 \mathrm{~mol}^{-1}$, indicating thus the presence of an intramolecular hydrogen bond $\mathrm{N}^{2}-\mathrm{H} . . . \mathrm{OC}_{2} \mathrm{H}_{5}$. Its existence was also proved by the ${ }^{1} \mathrm{H}$ NMR spectrum of the phenylsemicarbazide $X V a$ in which the signal of the $\mathrm{N}^{4}-\mathrm{H}$ proton is at 7.95 ppm whereas the $\mathrm{N}^{2}-\mathrm{H}$
proton signal is shifted up to 10.09 ppm . In the spectra of the tri-O-benzoyl derivatives the NH proton signals cannot be located because they overlap with the multiplet of benzoyl protons. Infrared spectra of the (E)-isomers XIII, XIV,XVb and XVIb do not exhibit any bonded NH group bands. The ${ }^{1} \mathrm{H}$ NMR signals of the NH protons in the phenylsemicarbazide $X I I I$ are at 8.67 and 8.98 ppm and in the compound $X V b$ at 7.91 and 8.00 ppm .


## EXPERIMENTAL

Melting points were taken on a heated microscope stage (Kofler block). The IR spectra were recorded on a UR-20 apparatus (Carl Zeiss, Jena). The ${ }^{1} \mathrm{H}$ NMR spectra were measured on Tesla BS $467(60 \mathrm{MHz})$ and Tesla BS $497(100 \mathrm{MHz})$ instruments, using tetramethylsilane as internal standard; chemical shifts ( $\delta$ values) are expressed in ppm and coupling constants in Hz . Column chromatography was performed on Pitra silica gel (particle size $30-60 \mu \mathrm{~m}$; produced by Service Laboratories of this Institute).

## 4-Benzylsemicarbazide

Hydrazine hydrate ( 1 ml ) was added to a stirred solution of 3 -benzylthiazolidine-2,4-dione ${ }^{5}$ $(2 \cdot 1 \mathrm{~g} ; 10 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{ml})$. After 30 min , the mixture was poured into ethyl acetate $(200 \mathrm{ml})$, washed with water ( $2 \times 30 \mathrm{ml}$ ) and saturated sodium chloride solution ( 30 ml ), dried over magnesium sulfate and the solvent was evaporated in vacuo. Crystallization of the residue from toluene afforded $1.25 \mathrm{~g}(76 \%)$ of 4 -benzylsemicarbazide, m.p. $110.5-111.5^{\circ} \mathrm{C}$ (reported ${ }^{5}$ m.p. $111^{\circ} \mathrm{C}$ ).

## 4-Benzyl-1,2,4-triazol-3(2H)-one (III)

A) A solution of the triazolone $I$ ( $172 \mathrm{mg} ; 2 \mathrm{mmol}$ ) in $1 \mathrm{~mol} 1^{-1}$ methanolic sodium methoxide $(4 \mathrm{ml})$ was taken down in vacuo. The residue was stirred with dimethylformamide ( 4 ml ) and benzyl chloride ( 0.5 ml ) was added with stirring. After stirring for 4.5 h at room temperature, the mixture was taken down in vacuo, the residue was mixed with water ( 10 ml ), shaken with chloroform ( $3 \times 15 \mathrm{ml}$ ) and the chloroform solution was dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was chromatographed on a column of silica gel ( 50 g ) in ethyl acetate. The first fraction after evaporation of the solvent and crystallization of the residue from toluene-n-heptane afforded $83 \mathrm{mg}(16 \%)$ of 2,4-dibenzyl-1,2,4-triazol-3( $2 H$ )-one ( $I V$ ), m.p. $91-93^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR Spectrum ( 60 MHz , deuteriochloroform): $4.78\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.97(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2}$ ), $7 \cdot 34\left(\mathrm{~s}, 11 \mathrm{H}, \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. For $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}(265 \cdot 3)$ calculated: $72 \cdot 43 \% \mathrm{C}, 5 \cdot 70 \% \mathrm{H}, 15 \cdot 84 \%$ N ; found: $72.63 \% \mathrm{C}, 5.52 \% \mathrm{H}, 16.02 \% \mathrm{~N}$.

The second chromatographic fraction was crystallized from toluene affording 115 mg ( $33 \%$ ) of the monobenzyl derivative $I I I$, m.p. $117.5-120 \cdot 5^{\circ} \mathrm{C}$. IR Spectrum (chloroform): $3474 \mathrm{~cm}^{-1}$ ( NH ), $1714 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum ( 60 MHz , deuteriochloroform): 4.80 (s, 2 H , $\mathrm{CH}_{2}$ ), $7 \cdot 34\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ ), $11 \cdot 12$ (broad s, $1 \mathrm{H}, \mathrm{H}_{2}$ ). $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}(175 \cdot 2)$ calculated: $61 \cdot 70 \% \mathrm{C}$, $5.18 \% \mathrm{H}, 23.99 \% \mathrm{~N}$; found: $61.77 \% \mathrm{C}, 5.01 \% \mathrm{H}, 24.22 \% \mathrm{~N}$.

The aqueous solution after extraction with chloroform was taken down and the residue was chromatographed on a column of silica gel ( 15 g ) in an ethyl acetate-acetone-ethanol-water mixture (36:6:5:3), affording $52 \mathrm{mg}(30 \%)$ of the starting triazolone $I$.
B) A solution of 4-benzylsemicarbazide ( $165 \mathrm{mg} ; 1 \mathrm{mmol}$ ) in boiling ethyl formate ( 1.75 ml ) was refluxed for 15 min . After standing at room temperature for 16 h , the separated compound
$(138 \mathrm{mg})$ was filtered and heated with a $10 \%$ aqueous potassium hydroxide solution ( 0.75 ml ) to $115^{\circ} \mathrm{C}$ (bath temperature) for 2 h . The cold solution was neutralized with concentrated hydrochloric acid, the separated product was collected on a filter, washed with water and dried. Crystallization from toluene gave $66 \mathrm{mg}(38 \%)$ of the benzyltriazolone $I I I$, m.p. $117-119^{\circ} \mathrm{C}$; its IR and ${ }^{1} \mathrm{H}$ NMR spectra were identical with those of the compound prepared according to procedure $A$ ), also the mixture melting points showed no depression.

## 4-Benzyl-5-methyl-1,2,4-triazol-3(2H)-one ( ${ }^{\prime}$ )

A) Benzylation of 5 -methyltriazolone $I I$ (ref. ${ }^{3} ; 198 \mathrm{mg} ; 2 \mathrm{mmol}$ ) was performed in the same manner as described for $I$. Chromatography on a column of silica gel ( 50 g ) in ethyl acetate afforded 118 mg ( $21 \%$ ) of sirupy 2,4 -dibenzyl-5-methyl-1,2,4-triazol-3( $2 H$ )-one ( $V I$ ). ${ }^{1} \mathrm{H}$ NMR spectrum ( 60 MHz , deuteriochloroform): $2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.93(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 7.30\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$. For $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}(279 \cdot 3)$ calculated: $73.09 \% \mathrm{C}, 6.14 \% \mathrm{H}, 15.04 \% \mathrm{~N}$; found: $73.29 \% \mathrm{C}, 6.23 \% \mathrm{H}, 15 \cdot 19 \% \mathrm{~N}$.

The residue after evaporation of the second fraction was crystallized from toluene, yielding $96 \mathrm{mg}(25 \%)$ of the monobenzyl derivative $V$, m.p. $142 \cdot 5-145 \cdot 5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR Spectrum ( 60 MHz , deuteriochloroform): $2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.82\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.25\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 10.80($ broad s, $1 \mathrm{H}, \mathrm{H}_{2}$ ). For $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}(189 \cdot 2)$ calculated: $63 \cdot 47 \% \mathrm{C}, 5.86 \% \mathrm{H}, 22.21 \% \mathrm{~N}$; found: $63 \cdot 32 \% \mathrm{C}$, $5.91 \% \mathrm{H}, 22 \cdot 20 \% \mathrm{~N}$.
B) Finely ground 4-benzylsemicarbazide ( $330 \mathrm{mg} ; 2 \mathrm{mmol}$ ) was stirred with acetic anhydride $(0.2 \mathrm{ml})$ for 1 h . The mixture was mixed with ether, the solid was filtered ( 345 mg ) and heated with $10 \%$ aqueous potassium hydroxide solution $(1.5 \mathrm{ml})$ to $120^{\circ} \mathrm{C}$ for 2 h . After cooling, the solution was neutralized with hydrochloric acid, the separated compound was filtered, washed with water and dried. Crystallization from toluene gave $260 \mathrm{mg}(69 \%$ ) of compound $V$, m.p. $143.146^{\circ} \mathrm{C}$; no melting point depression on admixture with the compound prepared according to $A$ ). Also the ${ }^{1} \mathrm{H}$ NMR spectra of both compounds were identical.

## 4-(2,3,5-Tri-O-benzoyl- $\beta$-D-ribofuranosyl)-1,2,4-triazol-3(2H)-one (IXa)

A) A mixture of triazolone $I(800 \mathrm{mg} ; 12 \mathrm{mmol}$ ), hexamethyldisilazane ( 30 ml ) and ammonium sulfate ( 30 mg ) was heated for 4 h to $140^{\circ} \mathrm{C}$ (bath temperature). The solution was taken down in vacuo, the crystalline residue was codistilled with toluene ( 30 ml ) and dissolved in a solution of $2,3,5-$ tri-O-benzoyl-D-ribofuranosyl bromide (prepared from $5.06 \mathrm{~g}, 10 \mathrm{mmol}$ of 1 -O-ace-tyl-2,3,5-tri-O-benzoyl-J-ribofuranose) in acetonitrile ( 20 ml ). Mercuric bromide ( 1 g ) and molecular sieves (Linde Molekularsieb $4 \mathrm{~A} ; 2 \mathrm{~g}$ ) were added and the mixture was stirred at room temperature for 4 h . The mixture was filtered, the solids were washed with acetonitrile ( 10 ml ) and the solvent was evaporated in vacuo. The residue was dissolved in chloroform ( 100 ml ), the solution was washed with $10 \%$ potassium iodide solution ( $3 \times 40 \mathrm{ml}$ ), and water ( $2 \times 40 \mathrm{ml}$ ), dried over magnesium sulfate and taken down in vacuo. The residue was crystallized from ethanol $(500 \mathrm{ml})$ to give $2.07 \mathrm{~g}(42.5 \%$ based on 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose) of the diribosyltriazolone $X a$, m.p. $231-236^{\circ} \mathrm{C}$. IR Spectrum (chloroform): $1732 \mathrm{~cm}^{-1}$ ( $\mathrm{C}=\mathrm{O}$ of benzoate), $\mathrm{I} 692 \mathrm{~cm}^{-1}$ ( $\mathrm{C}=\mathrm{O}$ of triazolone). For $\mathrm{C}_{54} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{15}(973.9$ ) calculated: $66.59 \% \mathrm{C}, 4.45 \% \mathrm{H}$, $4.31 \% \mathrm{~N}$ : found: $66.48 \% \mathrm{C}, 4.41 \% \mathrm{H}, \mathbf{4} 23 \% \mathrm{~N}$.

The mother liquors were stripped of the solvent and the residue was crystallized from ethanol ( 100 ml ) affording 1.50 g ( $28 \%$ based on 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose) of the ribosyltriazolone $I X a$, m.p. $203-204^{\circ} \mathrm{C}$. A further amount of $I X a(0.6 \mathrm{~g}, 11 \%)$, m.p. $201-204^{\circ} \mathrm{C}$, was obtained from the mother liquors by crystallization from ethanol. IR Spectrum (chloroform):
$3469 \mathrm{~cm}^{-1}(\mathrm{NH}), 1733 \mathrm{~cm}^{-1}$ ( $\mathrm{C}=\mathrm{O}$ benzoate, triazolone). For $\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{\mathrm{g}}$ (529.5) calculated: $63.51 \% \mathrm{C}, 4.38 \% \mathrm{H}, 7.94 \% \mathrm{~N}$; found: $63.55 \% \mathrm{C}, 4.42 \% \mathrm{H}, 7.97 \% \mathrm{~N}$.
B) A mixture of semicarbazide $X I V$ ( $576 \mathrm{mg} ; 1 \mathrm{mmol}$ ), xylene ( 6 ml ), hexamethyldisilazane $(1.6 \mathrm{ml})$ and ammonium sulfate ( 7 mg ) was refluxed for 10 h , cooled and taken down in vacuo. The residue was dissolved in methanol ( 3 ml ) and 3 drops of water were added. The solution deposited $280 \mathrm{mg}(53 \%)$ of $I X a$, m.p. $200-203^{\circ} \mathrm{C}$. Infrared spectrum of this product was identical with that of the compound prepared by procedure $A$ ).

## 4- $\beta$-D-Ribofuranosyl-1,2,4-triazol-3(2H)-one (IXb)

A solution of the benzoyl derivative $I X a\left(529 \mathrm{mg} ; 1 \mathrm{mmol}\right.$ ) in $0.1 \mathrm{~mol} \mathrm{l}^{-1}$ methanolic sodium methoxide ( 25 ml ) was allowed to stand for 2 h at room temperature and neutralized with Dowex $50\left(\mathrm{H}^{+}\right.$; pre-washed with methanol). The ion exchange resin was filtered and washed with methanol ( 180 ml ), the combined filtrates were taken down in vacuo and the residue was crystallized from methanol, affording $120 \mathrm{mg}\left(56 \%\right.$ ) of compound $I X b$, m.p. $175-176^{\circ} \mathrm{C}$. Chromatography of the mother liquors on a silica gel column ( 25 g ) in ethyl acetate-acetone-ethanol-water ( 15 : $: 3: 4: 3$ ), followed by crystallization from methanol furnished further amount ( $48 \mathrm{mg} ; 22 \%$ ) of $I X b$. IR Spectrum (KBr): 3513 and $3435 \mathrm{~cm}^{-1}(\mathrm{OH}, \mathrm{NH}), 1702$ and $1669 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$, 1574 and $\operatorname{sh} 1568 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR Spectrum ( 60 MHz , hexadeuteriodimethyl sulfoxide): $3.38-3.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5}\right.$ ), $3.69-4.40\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}\right.$ ), $4.81-5.43\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{1}, \mathrm{OH}\right)$, $8.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 11.75$ (broad $\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{2}\right)$; after exchange with deuterium oxide: $3.48(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}_{5^{\prime}}$ ), 3.69-4.40 (m, $3 \mathrm{H}, \mathrm{H}_{2}, \mathrm{H}_{3^{\prime}}, \mathrm{H}_{4}$ ), $5.28\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{1^{\prime}}, J_{1^{\prime}, 2^{\prime}}=6.0\right.$ ), $8.05\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right)$. For $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{5}(217 \cdot 2)$ calculated: $38.71 \% \mathrm{C}, 5.11 \% \mathrm{H}, 19.35 \% \mathrm{~N}$; found: $38.88 \% \mathrm{C}, 5 \cdot 13 \% \mathrm{H}$, $19 \cdot 45 \% \mathrm{~N}$.

## 2,4-Bis-( $\beta$-D-ribofuranosyl)-1,2,4-triazol-3( 2 H )-one ( Xb )

The benzoyl derivative $X a(325 \mathrm{mg} ; 0.33 \mathrm{mmol})$ was shaken with $0.1 \mathrm{~mol} \mathrm{l}^{-1}$ methanolic solution of barium methoxide ( 20 ml ) at room temperature for 6 h . The mixture was saturated with carbon dioxide, water ( 1 ml ) was added, followed by aqueous ammonia to slightly alkaline reaction. The precipitate was filtered through a layer of silica gel which was then washed with methanol until the eluate no more absorbed in the UV region. The combined filtrates were taken down in vacuo and the residue was crystallized from methanol to give $90 \mathrm{mg}(76 \%)$ of the hemihydrate of $X b$, m.p. $178 \cdot 5-180 \cdot 5^{\circ} \mathrm{C}$. IR Spectrum ( KBr ): $1642 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1563 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{N})$; (dimethyl sulfoxide): $1677 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1568 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$. For $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{9}$. $.0 .5 \mathrm{H}_{2} \mathrm{O}(358 \cdot 3)$ calculated: $40.22 \% \mathrm{C}, 5.63 \% \mathrm{H}, 11.73 \% \mathrm{~N}$; found: $40.13 \% \mathrm{C}, 5.83 \% \mathrm{H}, 11 \cdot 66 \% \mathrm{~N}$.

## 4-(2,3,5-Tri-O-benzoyl- $\beta$-D-ribofuranosyl)-5-methyl-1,2,4-triazol-3(2H)-one (XIa)

A) A mixture of the triazolone $I I(1 \cdot 19 \mathrm{~g} ; 12 \mathrm{mmol}$ ), hexamethyldisilazane ( 30 ml ) and ammonium sulfate ( 30 mg ) was heated to $140^{\circ} \mathrm{C}$ (bath temperature) for 4.5 h . After evaporation in vacuo, the residue was codistilled with toluene ( 30 ml ). The thus-obtained silyl derivative was ribosylated in the same manner as described for the triazolone $I$. Chromatography of the crude product on a silica gel column ( 600 g ) in toluene-ethyl acetate ( $3: 2$ ) afforded $3.23 \mathrm{~g}(59 \%)$ of the 4-ribosyl derivative $X I a$ as a foam. ${ }^{1} \mathrm{H}$ NMR Spectrum ( 60 MHz , deuteriochloroform): $2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.71\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{4^{\prime}}, \mathrm{H}_{5^{\prime}}\right), 5.73\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}, J_{3^{\prime}, 2^{\prime}}=3\right), 6.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{2^{\prime}}\right)$, $7 \cdot 13-8.22(\mathrm{~m}, 15 \mathrm{H}$, benzoate H$), 10 \cdot 10\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right)$. For $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{8}$ (543.5) calculated: $64.08 \% \mathrm{C}, 4.64 \% \mathrm{H}, 7.73 \% \mathrm{~N}$; found: $63.87 \% \mathrm{C}, 4.75 \% \mathrm{H}, 7.52 \% \mathrm{~N}$.

The second UV-absorbing fraction afforded $0.75 \mathrm{~g}(14 \%)$ of the 2-ribosyl derivative $X I I a$, m.p. $170-172^{\circ} \mathrm{C}$ (toluene). ${ }^{1} \mathrm{H}$ NMR Spectrum ( 60 MHz , deuteriochloroform): $2 \cdot 11(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{CH}_{3}$ ), $4.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{5}, \mathrm{H}_{4}\right.$ ), $6.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3^{\prime}}\right), 7.13-8.22(\mathrm{~m}, 15 \mathrm{H}$, benzoate H ), 11.60 (broad s, $1 \mathrm{H}, \mathrm{H}_{4}$ ). For $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{8}(543.5$ ) calculated: $64.08 \% \mathrm{C}, 4.64 \% \mathrm{H}, 7.73 \% \mathrm{~N}$; found: $64.00 \% \mathrm{C}, 4.70 \% \mathrm{H}, 7.73 \% \mathrm{~N}$.
B) A mixture of the semicarbazides $X V I a, b$ ( $590 \mathrm{mg} ; 1 \mathrm{mmol}$ ), xylene ( 6 ml ), hexamethyldisilazane ( 1.6 ml ) and ammonium sulfate ( 7 mg ) was refluxed for 12 h and taken down in vacuo. The residue was codistilled with toluene ( 6 ml ) and methanol ( 6 ml ) and chromatographed on a column of silica gel ( 50 g ) in toluene-ethyl acetate ( $1: 1$ ), affording $271 \mathrm{mg}(50 \%$ ) of the triazolone $X I a$ (foam). Its ${ }^{1} \mathrm{H}$ NMR spectrum was identical with that of the compound prepared by ribosylation of $I I$. Also the ${ }^{1} \mathrm{H}$ NMR and IR spectra of the free ribosyltriazolone XIb prepared by methanolysis were identical with those of the compound obtained by ribosylation of $I I$ and subsequent methanolysis.

4- $\beta$-1-Ribofuranosyl-5-methyl-1,2,4-triazol-3(2H)-one (XIb)
A solution of the benzoyl derivative $X I a(543 \mathrm{mg} ; 1 \mathrm{mmol})$ in $0 \cdot 1 \mathrm{~mol} 1^{-1}$ methanolic solution of sodium methoxide ( 15 ml ) was set aside for 2 h at room temperature and neutralized with Dowex $50\left(\mathrm{H}^{+}\right.$; pre-washed with methanol). The Dowex was filtered, washed with methanol ( 20 ml ) and the combined filtrates were taken down in vacuo. The residue was chromatographed on a column of silica gel ( 35 g ) in ethyl acetate-acetone-ethanol-water ( $15: 3: 4: 3$ ) to give 145 mg ( $58 \%$ ) of XIb as a solid foam. ${ }^{1} \mathrm{H}$ NMR Spectrum ( 60 MHz , hexadeuteriodimethyl sulfoxide): $2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.37-3.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5}\right.$ ) , $3.67-5 \cdot 15\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{2}, \mathrm{H}_{3^{\prime}}, \mathrm{H}_{4}\right.$ ) , 4.15-5.17 $(\mathrm{m}, 3 \mathrm{H}, \mathrm{OH}), 5.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{1}, J_{1^{\prime}, 2^{\prime}}=6.5\right.$ ), 11.43 (broad s, $1 \mathrm{H}, \mathrm{H}_{2}$ ). For $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{5} . \mathrm{H}_{2} \mathrm{O}$ ( 249.2 ) calculated: $38.55 \% \mathrm{C}, 6.07 \% \mathrm{H}, 16.86 \% \mathrm{~N}$; found: $38.64 \% \mathrm{C}, 6.00 \% \mathrm{H}, 16.73 \% \mathrm{~N}$.

## 2- $\beta$-D-Ribofuranosyl-5-methyl-1,2,4-triazol-3(2H)-one (XIIb)

The title compound was obtained as a solid foam in $61 \%$ yield ( 141 mg ) from the benzoyl derivative XIIa ( 543 mg ; 1 mmol ) as described for the methanolysis of XIa. ${ }^{1} \mathrm{H}$ NMR Spectrum ( 100 MHz , hexadeuteriodimethyl sulfoxide): $2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{5}, \mathrm{OH}\right), 3.74(\mathrm{q}, 1 \mathrm{H}$, $\mathrm{H}_{4^{\prime}}, J_{4^{\prime}, 3^{\prime}}=-=J_{4^{\prime}, 5^{\prime}}=5$ ), $3.98\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}, J_{3^{\prime}, 2^{\prime}}=J_{3^{\prime}, 4^{\prime}}=5\right.$ ), $4.25\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}_{2^{\prime}}, J_{2^{\prime}, 1^{\prime}}=\right.$ $\cdots J_{2^{\prime}, 3^{\prime}}=5$ ), $4 \cdot 40-5 \cdot 30\left(\right.$ broad d, $\left.2 \mathrm{H}, \mathrm{OH}, \mathrm{H}_{4}\right), 5 \cdot 36\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{1^{\prime}}, J_{1^{\prime}, 2^{\prime}}=5\right)$. For $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3}$. .$O_{5}(231-2)$ calculated: $41.56 \% \mathrm{C}, 5.67 \% \mathrm{H}, 18 \cdot 17 \% \mathrm{~N}$; found: $41.36 \% \mathrm{C}, 5.80 \% \mathrm{H}, 18.33 \% \mathrm{~N}$.

## (E)-1-Ethoxymethylene-4-phenylsemicarbazide (XIII)

Formic acid ( $10 \mu \mathrm{l}$ ) was added to a solution of 4 -phenylsemicarbazide ${ }^{7}$ ( $302 \mathrm{mg} ; 2 \mathrm{mmol}$ ) in a mixture of dichloromethane ( 25 ml ) and triethyl orthoformate ( 5 ml ). After standing at $20^{\circ} \mathrm{C}$ for 3 h , the mixture was concentrated in vacuo to about 5 ml and the separated crystals were collected; yield $337 \mathrm{mg}(81 \%)$ of XIII, m.p. $142-144^{\circ} \mathrm{C}$. IR Spectrum (chloroform, $0.003 \mathrm{~mol} \mathrm{I}^{-1}$ ): $3392 \mathrm{~cm}^{-1}$ (NH): $c 2 \%: 1694 \mathrm{~cm}^{-1}$ (amide I), $1658 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$, sh $1603,1595,1503$ and $1449 \mathrm{~cm}^{-1}$ (ring), $1538 \mathrm{~cm}^{-1}$ (amide II), $1391 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{3}, \mathrm{OC}_{2} \mathrm{H}_{5}\right.$ ), sh $1122 \mathrm{~cm}^{-1}$ (amide III), $1100 \mathrm{~cm}^{-1}$ $\left(\mathrm{CH}_{3}, \mathrm{OC}_{2} \mathrm{H}_{5}\right), 861 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{CH}) ; \mathrm{CCl}_{4}, 0.003 \mathrm{~mol}{ }^{-1}: 3402 \cdot 5 \mathrm{~cm}^{-1}$; saturated solution: $1709 \mathrm{~cm}^{-1}$ (amide I), $1652 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}), 1600$ and $1448 \mathrm{~cm}^{-1}$ (ring), $1540 \mathrm{~cm}^{-1}$ (amide II). ${ }^{1} \mathrm{H}$ NMR Spectrum ( 60 MHz , hexadeuteriodimethyl sulfoxide): $1 \cdot 12\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J_{\mathrm{CH}_{3}, \mathrm{CH}_{2}}=7\right.$ ), $3.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 4.02\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, J_{\mathrm{CH}_{2}, \mathrm{CH}_{3}}=7\right), 6.68-7.60\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.67(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}), 8.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. For $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}(207 \cdot 2)$ calculated: $57.96 \% \mathrm{C}, 6.32 \% \mathrm{H}, 20.28 \% \mathrm{~N}$; found: $57.89 \% \mathrm{C}, 6.25 \% \mathrm{H}, 20.53 \% \mathrm{~N}$.
$(Z)$ - and (E)-1-(1-Ethoxyethylidene)-4-phenylsemicarbazide ( $X V a$ and $X V b$ )
Formic acid ( $40 \mu \mathrm{l}$ ) was added to a cold ( $+3^{\circ} \mathrm{C}$ ) solution of 4-phenylsemicarbazide ( 605 mg ; 4 mmol ) in a mixture of dichloromethane ( 50 ml ) and triethyl orthoacetate ( 10 ml ). After standing for 1 h at $3^{\circ} \mathrm{C}$, the solution was concentrated in vacuo to about 10 ml and light petroleum ( 50 ml ) was added. The precipitate was filtered and chromatographed on a column of silica gel ( 140 g ) in toluene-ethyl acetate ( $1: 1$ ). The first fraction was stripped of the solvents and the residue on crystallization from 2-propanol gave $385 \mathrm{mg}\left(43.5 \%\right.$ ) of $X V a$, m.p. $157-159^{\circ} \mathrm{C}$. The mother liquors furnished another portion ( $29 \mathrm{mg} ; 3 \%$ ) of the product. IR Spectrum (chloroform, 0.003 mol $1^{-1}$ ): $3392 \mathrm{~cm}^{-1}$ (free NH); $2 \%: 3391 \mathrm{~cm}^{-1}$ (free NH), $3214 \mathrm{~cm}^{-1}$ (bonded NH), 1690 $\mathrm{cm}^{-1}$ (amide I), $1666 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{N}\right.$ ), sh 1602,1595 , sh 1504 and $1449 \mathrm{~cm}^{-1}$ (ring), 1538 $\mathrm{cm}^{-1}$ (amide II), $1379 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{3}\right), 1308 \mathrm{~cm}^{-1}\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{N}\right.$ ); tetrachloromethane, 0.003 mol . $.1^{-1}: 3394.5 \mathrm{~cm}^{-1}$ (free NH), 3205 and $3100 \mathrm{~cm}^{-1}$ (bonded NH), $1694.5 \mathrm{~cm}^{-1}$ (amide I); saturated solution: $3392 \mathrm{~cm}^{-1}$ (free NH), 3205 and $3098 \mathrm{~cm}^{-1}$ (bonded NH), $1693 \mathrm{~cm}^{-1}$ (amide I), $1667 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{N}\right.$ ), sh 1603,1595 , sh 1504 and $1449 \mathrm{~cm}^{-1}$ (ring), $1539 \mathrm{~cm}^{-1}$ (amide II); ${ }^{1} \mathrm{H}$ NMR spectrum ( 60 MHz , deuteriochloroform): $1.36\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J_{\mathrm{CH}_{3}, \mathrm{CH}_{\mathbf{2}}}=7\right.$ ), $2 \cdot 11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.15\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, J_{\mathrm{CH}_{2}, \mathrm{CH}_{3}}=7\right.$ ), 6.96-7.60(m,5 H, $\mathrm{C}_{6} \mathrm{H}_{5}$ ), 7.95 (broad s, $\left.1 \mathrm{H}, \mathrm{N}^{4}-\mathrm{H}\right), 10.09$ (broad $\mathrm{s}, 1 \mathrm{H}, \mathrm{N}^{2}-\mathrm{H}$ ). For $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}(221.25)$ calculated: $59.71 \% \mathrm{C}$, $6.83 \% \mathrm{H}, 18.99 \% \mathrm{~N}$; found: $59.93 \% \mathrm{C}, 6.86 \% \mathrm{H}, 19.06 \% \mathrm{~N}$.

The second fraction after evaporation and crystallization from 2-propanol gave $58 \mathrm{mg}(6.5 \%)$ of the ( $E$ )-isomer $X V b$, m.p. $123-126^{\circ} \mathrm{C}$. JR Spectrum (chloroform, $0 \cdot 003 \mathrm{~mol} \mathrm{l}^{-1}$ ): $3393 \mathrm{~cm}^{-1}$ (free NH ) ; $2 \%: 3393 \mathrm{~cm}^{-1}(\mathrm{NH}), 1686 \mathrm{~cm}^{-1}$ (amide I), sh $1666 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}$ ), sh 1602 , 1595 , sh 1504 and $1450 \mathrm{~cm}^{-1}$ (ring), $1540 \mathrm{~cm}^{-1}$ (amide II), $1383 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{3}\right), 1306 \mathrm{~cm}^{-1}$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{N}\right)$; tetrachloromethane, $0.003 \mathrm{~mol}^{-1}: 3401.5 \mathrm{~cm}^{-1}(\mathrm{NH}), 1711 \mathrm{~cm}^{-1}$ (amide I), $1667 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$; saturated solution: $1701 \mathrm{~cm}^{-1}$ (amide I), sh $1667 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}), 1604$, 1595,1501 and $1448 \mathrm{~cm}^{-1}$ (ring), $1537 \mathrm{~cm}^{-1}$ (amide II). ${ }^{1} \mathrm{H}$ NMR Spectrum ( 60 MHz , deuteriochloroform): $1.32\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J_{\mathrm{CH}_{3}, \mathrm{CH}_{2}}=7\right.$ ), $2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.07\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, $J_{\mathrm{CH}_{2}, \mathrm{CH}_{3}}=7$ ), $6.80-7.70\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.91$ (broad s, $1 \mathrm{H}, \mathrm{NH}$ ), 8.00 (broad $\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$ ). For $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}(221.25)$ calculated: $59.71 \% \mathrm{C}, 6.83 \% \mathrm{H}, 18.99 \% \mathrm{~N}$; found: $59.48 \% \mathrm{C}, 6.92 \% \mathrm{H}$, $19 \cdot 24 \% \mathrm{~N}$.
(E)-4-(2,3,5-Tri-O-benzoyl- $\beta$-D-ribofuranosyl)-1-ethoxymethylenesemicarbazide (XIV)

Formic acid ( $20 \mu \mathrm{l}$ ) was added to a solution of 4-(2,3,5-tri-O-benzoyl- $\beta$-D-ribofuranosyl)semicarbazide ${ }^{6}$ ( $1.04 \mathrm{~g} ; 2 \mathrm{mmol}$ ) in dichloromethane $(30 \mathrm{ml})$ and triethyl orthoformate ( 6 ml ). After standing for 4 h at room temperature, the solution was concentrated to 2 ml and mixed with light petroleum. The precipitate was filtered and washed with light petroleum, affording $1 \cdot 13 \mathrm{~g}$ $\left(98 \%\right.$ ) of compound $X I V$, m.p. $143-146^{\circ} \mathrm{C}$. An analytical sample was crystallized from ethanol; m.p. $145-147^{\circ} \mathrm{C}$. IR Spectrum (chloroform, $2 \%$ ): $3400 \mathrm{~cm}^{-1}(\mathrm{NH}), 1694 \mathrm{~cm}^{-1}$ (amide I), $1531 \mathrm{~cm}^{-1}$ (amide II), 1436,1391 and $1046 \mathrm{~cm}^{-1}$ (O) $\mathrm{C}_{2} \mathrm{H}_{5}$ ); tetrachloromethane, saturated solution: $3403 \mathrm{~cm}^{-1}(\mathrm{NH}), 1731 \mathrm{~cm}^{-1}\left(\mathrm{C}=0\right.$ benzoate), sh $1706 \mathrm{~cm}^{-1}$ (amide I), sh 1653 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{N}), 1603,1589$, sh $1501 \mathrm{~cm}^{-1}$ (ring), $1521 \mathrm{~cm}^{-1}$ (amide II). ${ }^{1} \mathrm{H} N \mathrm{NR}$ Spectrum ( 60 MHz , deuteriochloroform): $1.28\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J_{\mathrm{CH}_{3}, \mathrm{CH}_{2}}=7\right.$ ), $4.04\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, J_{\mathrm{CH}_{2}, \mathrm{CH}_{3}}=\right.$ $=7$ ), 4.61 (broad s, $3 \mathrm{H}, \mathrm{H}_{4^{\prime}}, \mathrm{H}_{5^{\prime}}$ ), $5.48-\ldots .23\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{2}, \mathrm{H}_{3^{\prime}}\right.$ ), $6.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 6.80$ (d, $1 \mathrm{H}, \mathrm{NH}, J_{\mathrm{NH}, 1^{\prime}}=9$ ), $7 \cdot 10-8.22\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{NH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)$. For $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{9}$ (575.55) calculated: $62.60 \% \mathrm{C}, 5 \cdot 08 \% \mathrm{H}, 7.30 \% \mathrm{~N}$; found: $62.55 \% \mathrm{C}, 5.03 \% \mathrm{H}, 7.29 \% \mathrm{~N}$.
( $Z$ )- and ( $E$ )-4-(2,3,5-Tri-O-benzoyl- $\beta$-D-ribofuranosyl)-1-(1-ethoxyethylidene)semicarbazide ( $X \mid I a$ and $X V I b$ )

A solution of 4-(2,3,5-tri-O-benzoyl- $\beta$-D-ribofuranosyl)semicarbazide ${ }^{6}$ ( $519 \mathrm{mg} ; 1 \mathrm{mmol}$ ) in dichloromethane ( 15 ml ) and triethyl orthoacetate ( 3 ml ) was cooled to $+3^{\circ} \mathrm{C}$ and formic acid $(30 \mu \mathrm{l})$ was added. After standing at $+3^{\circ} \mathrm{C}$ for 2 h , the solution was concentrated in vacuo to about 3 ml and mixed with light petroleum ( 20 ml ). The oil was separated and chromatographed on a column of silica gel ( 200 g ) in toluene-ethyl acetate ( $1: 1$ ). The ( $Z$ )-isomer $X V a$ was eluted first and was obtained as a solid foam ( $342 \mathrm{mg}, 58 \%$ ). IR Spectrum (tetrachloromethane, 0.003 mol . $\left..1^{-1}\right): 3400 \mathrm{~cm}^{-1}\left(\mathrm{~N}^{4} \mathrm{H}\right), 3208 \mathrm{~cm}^{-1}\left(\mathrm{~N}^{2} \mathrm{H}\right)$; saturated solution: $3400 \mathrm{~cm}^{-1}\left(\mathrm{~N}^{4}-\mathrm{H}\right), 3208 \mathrm{~cm}^{-1}$ $\left(\mathrm{N}^{2} \mathrm{H}\right), 1733 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{O}\right.$ benzoate), $1692 \mathrm{~cm}^{-1}$ (amide I$)$, sh $1672(\mathrm{C}=\mathrm{N}), 1604,1585$ and sh $1496 \mathrm{~cm}^{-1}$ (ring), $1528 \mathrm{~cm}^{-1}$ (amide II), $1379 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR Spectrum ( 60 MHz , deuteriochloroform): $1 \cdot 17\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J_{\mathrm{CH}_{3}, \mathrm{CH}_{2}}=7\right.$ ), $1 \cdot 92$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ ), 3.90 (q, $2 \mathrm{H}, \mathrm{CH}_{2}, J_{\mathrm{CH}_{2}, \mathrm{CH}_{3}}=7$ ), 4.60 (broad s, $3 \mathrm{H}, \mathrm{H}_{4^{\prime}}, \mathrm{H}_{5}$ ), $5 \cdot 48-6.15\left(\mathrm{~m}, 3 \mathrm{H}_{1} \mathrm{H}_{1^{\prime}}, \mathrm{H}_{2}, \mathrm{H}_{3^{\prime}}\right.$ ), $6.70\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}, J_{\mathrm{NH}, 1^{\prime}}=9\right), 7 \cdot 17-8.23\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{NH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)$. For $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{9}(589 \cdot 6)$ calculated: $63 \cdot 15 \% \mathrm{C}, 5 \cdot 30 \% \mathrm{H}, 7 \cdot 13 \% \mathrm{~N}$; found $63 \cdot 41 \% \mathrm{C}, 5 \cdot 18 \% \mathrm{H}, 6 \cdot 95 \% \mathrm{~N}$.

The second fraction gave 165 mg ( $28 \%$ ) of the ( $E$ )-isomer $X V I b$ as a solid foam. IR Spectrum (tetrachloromethane): $3403 \mathrm{~cm}^{-1}(\mathrm{NH}), 1731 \mathrm{~cm}^{-1}$ (CO benzoate), sh $1706 \mathrm{~cm}^{-1}$ (amide I), sh $1653 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}), 1603,1589$ and sh $1501 \mathrm{~cm}^{-1}$ (ring), $1521 \mathrm{~cm}^{-1}$ (amide II). ${ }^{1} \mathrm{H}$ NMR Spectrum ( 60 MHz , deuteriochloroform): $1.28\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}, J_{\mathrm{CH}_{3}, \mathrm{CH}_{2}}=7\right.$ ), $1.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $4.05\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, J_{\mathrm{CH}_{2}, \mathrm{CH}_{3}}=7\right), 4.63$ (broad s, $3 \mathrm{H}, \mathrm{H}_{4^{\prime}}, \mathrm{H}_{5}$ ), $5.50-6.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{2}\right.$, $\mathrm{H}_{3}$ ), $6.82\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}, J_{\mathrm{NH}, 1^{\prime}}=9\right), 7 \cdot 17-8.30\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{NH}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)$. For $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{9}$ ( $589 \cdot 6$ ) calculated: $63 \cdot 15 \% \mathrm{C}, 5 \cdot 30 \% \mathrm{H}, 7 \cdot 13 \% \mathrm{~N}$; found: $63 \cdot 43 \% \mathrm{C}, 5 \cdot 20 \% \mathrm{H}, 6 \cdot 91 \% \mathrm{~N}$.

## 4-Phenyl-1,2,4-triazol-3(2H)-one (VII)

A mixture of the semicarbazone XIII ( $207 \mathrm{mg} ; 1 \mathrm{mmol}$ ), hexamethyldisilazane ( 6 ml ) and ammonium sulfate ( 3 mg ) was refluxed for 8 h at $140^{\circ} \mathrm{C}$ (bath). The residue after evaporation in vacuo was codistilled with toluene ( $2 \times 5 \mathrm{ml}$ ) and crystallized from methanol, affording 93 mg ( $58 \%$ )
 another $34 \mathrm{mg}(21 \%)$ of the product. ${ }^{1} \mathrm{H}$ NMR Spectrum ( 60 MHz , hexadeuteriodimethyl sulfoxide): $7.20-7.85\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 8.40\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 11.97\left(\right.$ broad s, $\left.1 \mathrm{H}, \mathrm{H}_{2}\right)$.

## 5-Methyl-4-phenyl-1,2,4-triazol-3(2H)-one (VIII)

A mixture of $(Z)$ - and ( $E$ )-semicarbazones $X V a, b$ ( $111 \mathrm{mg} ; 0.5 \mathrm{mmol}$ ), hexamethyldisilazane $(6 \mathrm{ml}$ ) and ammonium sulfate ( 3 mg ) was refluxed for 5 h and taken down in cacuo. The residue was codistilled with toluene ( $2 \times 5 \mathrm{ml}$ ) and dissolved in aqueous methanol. After 15 min , the solvent was evaporated and the residue was crystallized from 2-propanol to give 47 mg ( $51 \%$ ) of compound VIII as a hemihydrate, m.p. $154-156^{\circ} \mathrm{C}$ (reported ${ }^{8}$ m.p. $155^{\circ} \mathrm{C}$ and $154^{\circ} \mathrm{C}$ (ref. ${ }^{9}$ ); the cited references ${ }^{8,9}$ do not describe VIII as a hemihydrate). ${ }^{1} \mathrm{H}$ NMR Spectrum ( 60 MHz , deuteriochloroform): $2 \cdot 12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7 \cdot 17-7 \cdot 61\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 10 \cdot 83$ (broad $\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{2}\right)$.

The authors wish to thank to Mrs J. Hlavaćková for excellent technical assistance, Dr P. Fiedler for interpretation of the IR spectra, Mrs J. Jelinkocá for taking the ${ }^{1} \mathrm{H}$ NMR spectra, and the staff of the Analytical Laboratory (Dr J. Horáček, Head) for carrying out elemental analyses.

## REFERENCES

1. Kára J., Bártová M., Ryba M., Hřebabecký H., Brokes J., Novotný L., Beránek J.: This Journal 47, 2824 (1982).
2. Runti C., D'Osualdo V., Ulian F.: Ann. Chim. (Rome) 49, 1668 (1959); Chem. Abstr. 54, 22602 h (1960).
3. Kröger C.-F., Hummel L., Mutscher M., Beyer H.: Chem. Ber. 98, 3025 (1965).
4. Daunis J., Roumestant M.-L.: Bull. Soc. Chim. Fr. 1975, 1191.
5. Turkevich N. M., Vvedenskii V. M., Petlichnaya L. M.: Ukr. Khim. Zh. 27, 680 (1961); Chem. Abstr. 56, 14254 e (1962).
6. Hřebabecký H., Točík Z., Beránek J.: This Journal 44, 1475 (1979).
7. Wheeler A. S.: Org. Syn., Coll. Vol. I, 450 (1946).
8. Gehlen H., Schade W.: Justus Liebigs Ann. Chem. 675, 180 (1964).
9. Gehlen H., Dosk J., Cermak J.: Justus Liebigs Ann. Chem. 639, 100 (1961).

Translated by M. Tichý.

